Modeling Anomalous Hysteresis in Perovskite Solar Cells.
نویسندگان
چکیده
Organic-inorganic lead halide perovskites are distinct from most other semiconductors because they exhibit characteristics of both electronic and ionic motion. Accurate understanding of the optoelectronic impact of such properties is important to fully optimize devices and be aware of any limitations of perovskite solar cells and broader optoelectronic devices. Here we use a numerical drift-diffusion model to describe device operation of perovskite solar cells. To achieve hysteresis in the modeled current-voltage characteristics, we must include both ion migration and electronic charge traps, serving as recombination centers. Trapped electronic charges recombine with oppositely charged free electronic carriers, of which the density depends on the bias-dependent ion distribution in the perovskite. Our results therefore show that reduction of either the density of mobile ionic species or carrier trapping at the perovskite interface will remove the adverse hysteresis in perovskite solar cells. This gives a clear target for ongoing research effort and unifies previously conflicting experimental observations and theories.
منابع مشابه
Anomalous Hysteresis in Perovskite Solar Cells.
Perovskite solar cells have rapidly risen to the forefront of emerging photovoltaic technologies, exhibiting rapidly rising efficiencies. This is likely to continue to rise, but in the development of these solar cells there are unusual characteristics that have arisen, specifically an anomalous hysteresis in the current-voltage curves. We identify this phenomenon and show some examples of facto...
متن کاملThe Interplay between Trap Density and Hysteresis in Planar Heterojunction Perovskite Solar Cells.
Anomalous current-voltage (J-V) hysteresis in perovskite (PSK) solar cell is open to dispute, where hysteresis is argued to be due to electrode polarization, dipolar polarization, and/or native defects. However, a correlation between those factors and J-V hysteresis is hard to be directly evaluated because they usually coexist and are significantly varied depending on morphology and crystallini...
متن کاملA discussion on the origin and solutions of hysteresis in perovskite hybrid solar cells
Although the record efficiencies of perovskite hybrid solar cells are gradually reaching the efficiency of crystalline Si solar cells, perovskite hybrid solar cells often exhibit significant current density–voltage (J–V ) hysteresis with respect to the forward and reverse scan direction and scan rate. The origin of the J–V hysteresis of perovskite hybrid solar cells has not, to date, been clear...
متن کاملAntiferroelectric Nature of CH3NH3PbI3−xClx Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells
Perovskite solar cells (PSCs) have been attracted scientific interest due to high performance. Some researchers have suggested anomalous behavior of PSCs to the polarizations due to the ion migration or ferroelectric behavior. Experimental results and theoretical calculations have suggested the possibility of ferroelectricity in organic-inorganic perovskite. However, still no studies have been ...
متن کاملPerovskite Solar Cells: Progress and Advancements
Organic–inorganic hybrid perovskite solar cells (PSCs) have emerged as a new class of optoelectronic semiconductors that revolutionized the photovoltaic research in the recent years. The perovskite solar cells present numerous advantages include unique electronic structure, bandgap tunability, superior charge transport properties, facile processing, and low cost. Perovskite solar cells have dem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry letters
دوره 6 19 شماره
صفحات -
تاریخ انتشار 2015